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THE EFFECT OF TIME AND TEMPERATURE
ON THE MECHANICAL BEHAVIOR OF EPOXY COMPOSITES
PART II. MODE OF FAILURE, YIELD STRESS AND YIELD STRAIN
A. E. Moehlenpah*
O. Ishai**
A. T. DiBenedetto
Materials Research Laboratory

Washington University
St. Louis, Missouri 63130

Abstract

A crosslinked epoxy resin consisting of a 60/40 weight ratio of Epén 815 and
Versamid 140 and composites of this material with glass beads, unidirectional glass
fibers and air (foams) were tested in tension, compression and flexure to determine
the effect of time and temperature on the mode of failure, yield stress, and yield
strain. Unidirectional continuous fiber-filled samples were tested at different fiber
orientation angles with respect to the stress axis. Strain rates ranged from 10-4 to

10 min-I and the temperature from -1 to 107°C.

The material was found to change from a brittle-to-ductile-to-rubbzry failure
mode with the transition temperatures being a function of strain rate, filler conten®,
filler type and fiber orientation angle, indicating that the transition is perhaps depen-

dent on the state of stress.

In the ductile region, an approximately linear relationship between yield stress

and log strain is evident in all cases. The isotherms of yield stress versus log strain rate

*Presently at Hydro-Air Engineering, Inc., St. Louis, Missouri.
**Presently in the Department of Mechanics at the Technion, Israel Institute of Technology,

Haifa, Israel.
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were shifted to form a practically linear master plot of yield stress versus log shifted
strain rate that can be used to predict the yield stress of the composites at any tempera-
ture and strain rate in the ductile region. The time-temperature shift factors were found
to be independent of the type, concentration and orientation of filler and the mode of
loading. Thus, the composite shift factors seem to be a property of the matrix and not
dependent on the state of stress. The compressive-to-tensile yield stress ratio was prac-
tically invariant with shifted strain rate for the unfilled matrix, while fillers and voids
raised this ratio and caused it to increase with a decrease in shifted strain rate. The
yield strain of the composites is less than the unfilled matrix and is a function of fiber

orientation and shifted strain rate.
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I. Introduction

The effect of time and temperature on the tangent modulus and stress relaxation
! of epoxy composites was discyssed.in Part 1 [1]. The mechanical behavior of the
unfilled matrix was considered in another paper [2]. The effect of time and tempera-
ture on the mode of failure, yield stress, and yield strain of epoxy composites will be

reported in this paper.

A. Failure Modes and Transitions

The failure modes were determined from the shape of the load versus deforma-
tion curves. The failure modes are schematically illustrated in Figure 1. A material is
defined as "brittle" if it fails i~ the decreasing slope region before the stress-strain curve
reaches a rmaximum. "Ductile" behavior is defined when the stress=strain curve exhibits
a yield maximum. The term "ductile-rubbery" is applied when the stress-strain curve
shows an inflecfion point but not a maximum. A mode is called "rubbery" if the stress-

\ strain curves have constantly increasing slope but have no visible inflection or maximum.

B.’ Yield Stress

Nicholas and Freudenthal [3] showed that addition of NaCl filler to polyurethanes

*Presently at Hydro-Air Enginesring, Inc., St. Louis, Missouri.
*#*Presently in the Department of Mechanics at the Technion, Israel Institute of Technology,

Haifa, Israel.
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changes the stress=strain behavior from rubbery to ductile and that yield stress increases
as the particle size decreases. Lohr [4] compared the time-temperature dependence of
yield stress versus log strain rate with stress relaxation for polymethylmethacrylate, poly-
ethylene terephthalate, polystyrene and polyvinyl chloride. Essentially all of the yield
stress data could be superposed to give an almost straight line which is described by the
equation:

o, = K + Kylog(¢A) (1)

where K] and K2 are constants, oy = yield stress, and ¢ = strain rate. He found that
in general the yield stress shift factors were less than the stress relaxation shift factors.
His stress relaxation experiments wera determined at 1.43 percent strain, whereas yield
stress experiments were at higher strains where non-linearity and crack propagation
probably occurred. This hinted that'his AT may perhaps be a function of stress or
strain as well as temperature or that a different mechanism for flow occurs at different

levels of stress or strain.

Ishai [5] carried out a series of loading tests on 1:1 weight ratio Epon 815-
Versamid 140 samples at a series of constant strain rates under tension, compression, and
flexure at room temperature. In all cases the yield stress versus log strain rate was linear.
The ratio of compressive-to-tensile yield stress ranged from 1.27 to 1.38. A series of
creep tests was also performed on this material at high stress levels under tension, com-
pression, and flexure [6]. In all cases there is linearity between creep stress and log
secondary creep rate, which is almost coincident with the corresponding relationship be-
tween yield stress and log strain rate obtained in the constant strain rate tests. The defor-
mation during yielding which was not recoverable at room temperature was almost com-

pletely recoverable whén placed in an oven at temperatures above 100°C.
»



Ishai and Cohen [7] studied the effect of sand filler and air voids on the com-
pressive yield of epoxy composites at room temperature. For all volume fractions (to
51 percent for sand and to 66 percent for voids) plots of yield stress versus log strain rate
were linear. The slopes of these plots were the same for all concentrations of filler but

decreased with increasing volume fraction of voids.

The effects of temperature and strain rate on the failure characteristics of trans=
verse and longitudinal unidirectional glass-reinforced Epon 815-Versamid 140 were

studied by Preis [8]. Part of these data has been included in this paper.

II. Experimental Procedure

The constituent materials, fabrication of test specimens, and testing procedure

were described in Part 1 [1].

III. Results

A. Transition Behavior

The stress-strain behavior for the unfilled 60/40 Epon 815-Versamid 140 and
composites fabricated using this matrix is dependent on temperature and strain rate.

The transition regions for the unfilled and particulate filled material in terms of tem-

perature and strain rate for compression are shown in Figute 2. The transition from

_ductile to rubbery behavior is about the same for both compression and tension. It was

difficult to determine this transition in flexure since at high temperatures the deflection
is so large that the sample begins to slip off the holder and the resulting load-deflection

curves are invalid. Particulate filler or voids narrow the ductile region compared to
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the unfilled matrix. The effect of particulate filler, voids, and continuous transverse
fibers on the tensile brittle-ductile transition is shown in Figure 3. Flexural brittle-
ductile transitions are practically coincident with tensile brittle-ductile transitions.
Fillers and voids cause the material to be brittle at higher temperatures and lower strain
rates than the unfilled matrix. Figure 4 indicates that particulate filler or voids do not
change the compressive ductile to ductile=rubbery transition much but that continuous
transverse fibers raise this transition significantly. In summary, (1) the general patterns
of transition behavior are very similar for all systems in these modes of loading, with
the transition zones being a function of temperature and strain rate; (2) in general, the
addition of non-longitudinal reinforcement will make the region of ductile behavior

narrower; and (3) the brittle-ductile transition is much more sensitive to the presence

of a reinforcement than is the ductile to ductile-" scbery transition.

B. Yield Stress

In this paper the yield point is defined as the .r"naximum in the load-deflection
curve. Yield stress for all of the materials in all three modes of loading is dependent
on temperature and strain rate. Figures 5 to 8 show, respectively, the effect of tem-
perature and strain rate on the yield stress in tension and compression for the particulate
filled, tension for continuous filled at 20° orientation, and compression for continuous
transverse. These drawings are typical of others that could have been shown for other

modes of loading, other angles of orientation, or the other systems.

For all modes of loading and for all types of materials tested, yield stress is

practically linear with the logarithm of strain rate at constant temperature. Figure 9
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shows compressive yield stress at a strain rate (0.2 min ) for unfilled, particulate filled,
continuous transverse filled, and foam*. In general, the yield stress decreases with an
increase in temperature. The effect of temperature on yield stress for other strain rates

and for other modes of loading was very similar to that shown in Figure 9.

The yield stress versus log strain rate data was shifted along the strain rate axis
to obtain yield stress master curves in compression, tension, and flexure. Fifty degrees
Centigrade was chosen as a reference temperature beczuse at this temperature most of
the samples tested were auctile at the strain rates utilized. Values of the yield stress at
50°C were obtained from plots of yield stress versus temperature such as Figure 9. Fig-
ures 10 to 12 are plots of the yield stress shift factors versus remperature for the unfilled,
particulate filled, continuous transverse filled, and foam samples in the three modes of

loading. Clearly, neither the type of filler nor the mode of loading significantly affecis

*Since the density of the foam from one sample to the next was not the same, the values
of compressive yield stress were normalized to the average void fraction of 0.241 by the

following equation derived from the work of Ishai [7]:

_ 1-1.2 x 20173 (2)
g o 2/3

Ynormalized Yactual 1-1.2 CV

L4

The volume fraction of filler or voids was determined from the densities b'f/ the following

’ ‘
7

equation: : ,

§ (Aoc - ;om)(pf - pm) - (3)

where P, = density of composite, Pe = density of filler, and p_ = density of

matrix which was found to be 1.09 g/cc at room temperature.



the yield stress shift factors. The yield stress shift factors from Figures 10 to 12 were

curve-fit by a least-squares-type method to obtain the following cubic equation for
log AT:

log AL = -.3149 - .1376(1-50) - 4.952 x 10 (1-50)’
y (4)

+ 7.9 x 107 (1-50)°

The root mean square deviation of log AT was 0.329. This equation was used to
Y
determine yield stress shift factors in subsequent figures. The tensile and flexural yield

stress shift factors as a function of temperature for continuous filled samples at various
fiber orientations are shown in Figures 13 and 14. In general, the shift factors are also
independent of angle of orientation. Jhe deviations that occur in flexural tests with the
20° orientation at low temperatures are probably due to shear coupling [9, 10]. The
deviations appear when the length-to-width ratio of the flexure specimens was about 4.
When tensile specimens with a length-to-width ratio of 12 were used, the shear coupling

was minimized and the values of A_ were reduced to the expected values.

T

A visual summary of the data is shown by the master curves of Figures 15 to 19.
It can be seen in Figure 15 that the ultimate strengths reported in the brittle regions
have a greater degree of scatter than the yield points in the ductile region and that the
ultimate stress in the brittle zone is lower than the extrapolation of the yield stress line,
indicating that failure occurred before the yield point wal reached. Composites using
- 0.56 * 0.01 volume fraction transverse continuous glass fibers have greater tensile,
compressive and flexural yield stress than the unfilled matrix. Particulate glass filler

increase- the compressive yield stress but, at least at the 24 percent volume fraction,

does not significantly improve the tensile and fiexural yield stress. The presence of



voids lowers the tensile, compressive and flexural yield stress except at high temperatures
in compression. The yield stress versus log shifted strain rate is practically linear over the
entire ductile range for each composite and each-mode of loading. However, a second-

order equation of the form,

‘- CEN D B

In (éATy) + K, (lnéAT)z (5)

o = K

.. y ]+K

2

was found to fit the data better than a linear equation. The Eyring [11, 12] theory of

. non-Newtonian viscous flow* is a reasonable first approximation to the experimental

*The activation volume, V., can be determined at the reference temperature, Tref’ from

- 0
the slope of the yield stress versus log strain rate plot at Tref g

4|<'i'ref
-
VO " loge K2 (©)

where k = Boltzmann constant and K2 = slope of yield stress versus log strain rate at Tref .

From plots of yield stress versus temperature at constant strain rate, one can
determine the apparent activation energy, Q, and the frequency factor parameter, A,

assuming that log (AT) is fairly independent of temperature.

K3Tref
log (ATref) = log ¢ - K2 (7)
where K3 =slope at T _ of isochrone of yield stress versus temperature.
re
Vo N
Q = 7 [K] + K2 log (ATref)J (8)

where K] = yield stress at Tref at ¢ = 1,and N = Avagadro's number.

It can be seen that the K] and K2 are the same as that of Equation (1). The

shift factor can be related [13] to the above parameters in the foilowing way:

ref

log AT = log (ATref) (n - '_T'—) (9)
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data, so using the first two terms of Equation (5) and isochrones of yield stress versus
temperature, activation volumes, activation energies, and frequency factors were evalu-
ated using Equations (6-8). Table I gives the results of these calculations. It can be seen
that particulate filler and transversely oriented fibers do not affect the activation volumes
much but the foam incréases it considerably. This also can be seen from the slopes of
Figures 15 to 17 since slope is inversely proportional to activation volume. The activa-
tion volumes determined in tension are about 1.3 times as large as those determined in
compression. It can be seen that the term log (ATreF) which is related to the shift factors

remains relatively constant. Activation energies ranged from 63 to 89 kilocalories per

mole.

The ratios of compressive yield stress to tensile yield stress are plotted as a func-
tion of shifted strain rate in Figure 20. The compressive to tensile yield ratio, A, for the
unfilled material remains fairly constant, ranging only from 1.12 to 1.28 over seven
decades of shifted strain rate. For the particulate filled, continuous transverse filled and

the foam, A is greater than for the pure material.

With the appropriate values of A, and the flexural yield stress, one can calcuiate

the yield in tension and compression using the following equations [5]:

+1. PI
o = A =5 (10)
Yt BH
and
A+1, PI
o, = () °2 . 1)
Ye BH

where P = yield force, lo = length of flexural sample, B = width of flexural sample,

and H = depth of flexural sample.
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The calculated values of the yield in tension and compression are represented
by the dashed lines in Figures 21 and 22. For continuous transverse specimens, the value
of flexure expected from simple beam theory was obtained from tensile data and appro-

priate values of ), using the following equation:

o - G5y)e (12)

fsimple beam Y

The values obtained from this equation are represented by the dashed line in
Figure 23 and compared with the two experimental points that were obtained in flexure.
Thus Figures 21 to 23 show that the proposed analysis provides a suitable representation
of the stress distribution at yield in flexure for these epoxy composites and that one can

L] L d e , -
therefore predict tension and compression from flexure data and A or vice-versa.

Figure 24 shows the effect of angle on the normalized tensile yield stress at 45°.

The dashed line is based on a maximum distortional energy concept* for ductile systems.

*A theory used to predict the tensile strength of predominantly ductile unidirectional
fibrous composites is based on the maximum distortional energy concept. According to
this theory, yielding will occur when the second invariant of the deviatoric stress tensor
exceeds a constant. This criteria assumes that the isotropic stress tensor does not affect
yielding. Equation (13) gives the following relationship for the normalized tensile yield

stress, n, for the case of unidirectional composites:

o (0) o (6) .
n = _Yc = yc = (]3)
o o 2 1/2
YoQe Y450 sin 8 (1 + 2 cos“0)

where % (8) = composite uniaxial yield stress when fibers are oriented 8 degrees
c

with respect to the stress axis.
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Figure 24 shows that as leog (('A.I. ) increases (increase in strain rate and/or decrease in
Y

temperature), the data seems to approach the maximum distortional energy approximation.

The effect of angle on the normalized flexural yield stress is shown in Figure 25.
A shear coupling effect due to anisotropy [9, 10] causes the flexural specimens to twist
while being tested. This extra energy required to twist the sample causes the measured
flexural off-axis yield stress to be high. The shear coupling at 20° fiber orientation is
greater than at 45°, thus the normalized yield stress at 20° is higher than the theory pre-
dicts. From the results shown in Figures 14, 19 and 25, one may conclude that off-axis
testing of short flexural specimens is not satistactory at the angles where a high degree

-

of anisotropy occurs.

C. Yield Strain

Although there was considerable scatter (+ 10%) in the yield strain data, several
conclusions can be made: (1) Yield strain increases (from 4-5% up to 7-8% for unfilled
material) as the rubbery region is approached at low strain rates and/or high temperature.
(2) Flexural yield strains determined by the simple beam theory (6-8% at room tempera-
ture to 12-14% as rubbery behavior is approached) were higher than those obtained from
tensile and compressive measurements. This is probably due to the inadequacy of the

simple beam theory at high deflections. (3) Fillers and voids lower the yield strain.

IV. Conclusions

Yield stress data of epoxy composites can be correlated by the time-temperature

superposition principle to obtain master plots of yield stress versus log of shifted strain
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rate. The time-temperature shift factors are not affected by the mode of loading nor

the filler content, type, or orientation even though the actual values of yield stress, yield
strain, and transition temperatures for failure modes are affected by these variables. Thus,
the composite shift factors are a property of the matrix and not dependent on the state of

stress.
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Figure 25.

Flexural Yield Stress Versus Shifted Strain Rate for Unfilled, Particulate

Filled, and Foam, T , = 50°C.
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Tensile Yield Stress Versus Log Shifted Strain Rate for 20, 45, and 60°

Continuous Filled, T = 50°C.
ref

Flexural Yield Stress Versus Log Shifted Strain Rate for 20, 45, 60 and

90° Continuous Filled, Tref = 50°C.
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Yield Stress Versus Log Shifted Strain Rate for Particulate Filled, T
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Yield Stress Versus Log Shifted Strain Rate for Foam, Tref = 50°C.

Yield Stress Versus Log Shifted Strain Rate for Coniinuous Transverse,

T . = 50°C.
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Normalized Tensile Yield Stress Versus Fiber Orientation Angle.

Normalized Flexural Yield Stress Versus Fiber Orientation Angle.
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